Title: Fahrenheit/Celsius Temperature Conversions

Standard(s) Addressed in Lesson
Use Math to Solve Problems and Communicate

Benchmark(s) Addressed in Lesson

M. 4.13 Convert fluently, within measurement systems (metric, customary, time), from one unit to another in order to solve contextual problems and express the conversions using appropriate unit labels.
M. 4.28 Confirm results with a calculator.

Materials

Worksheet with answers available from http://www.math-drills.com/measurement.shtml (attached)
Pencil
Calculator
computer with Internet access for extra work

Learner Prior Knowledge

The student should have a command of addition, subtraction, multiplication, and division.
The student should have basic knowledge of temperatures, such as body temperature, freezing and boiling points of water, etc., in Fahrenheit and Celsius.

Activities

Step 1 Teacher explains that there are two main temperature scales - Fahrenheit (used in the U.S.) and Celsius (used in most other countries). They use different numbers to measure temperature. Teacher writes ${ }^{\circ} \mathrm{F}$ and ${ }^{\circ} \mathrm{C}$.

Step 2 Teacher states that the Celsius scale is based on the freezing and boiling points of water $\left(0^{\circ} \mathrm{C}\right.$ and $\left.100^{\circ} \mathrm{C}\right)$. These two points are equivalent to $32^{\circ} \mathrm{F}$ and $212^{\circ} \mathrm{F}$. Most measurements in medicine use the Celsius system. Pharmacy technicians may need to convert between the two systems. Fire rescue and welding personnel may also need to use both scales.

Step 3 To convert between the two systems, these equations are used:
To convert Celsius to Fahrenheit, use: $\left({ }^{\circ} \mathrm{C} \times 9 / 5\right)+32={ }^{\circ} \mathrm{F}$
To convert Fahrenheit to Celsius, use: $\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9={ }^{\circ} \mathrm{C}$

Step 4 Teacher writes several problems on board, shows steps to solve. Class does 4 problems together:
a) Convert $25^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F} \quad$ Answer: $77^{\circ} \mathrm{F}$
b) Convert $90^{\circ} \mathrm{C}$ to ${ }^{\circ} \mathrm{F} \quad$ Answer: $194^{\circ} \mathrm{F}$
c) Convert $86^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C} \quad$ Answer: $30^{\circ} \mathrm{C}$
d) Convert $115^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C} \quad$ Answer: $46.1^{\circ} \mathrm{C}$

Step 5 Teacher distributes worksheet and encourages students to do 20 problems, and, if time permits, continue on to complete all of the problems. Answer sheet will be distributed during last 15 minutes.
Worksheet problems taken from the following website:
http://www.math-drills.com/measurement.shtml
http://www.math-drills.com/measurement/convert_between_celsius_fahrenheit_001.pdf

Assessment/Evidence

Teacher monitors students as they work and checks for understanding. 80% correct shows mastery of concepts.
Student will have comprehension of Celsius and Fahrenheit thermometers.
Put students' completed papers in portfolio to demonstrate mastery of benchmarks related to the Basic Skills Stackable Certificate.

Adaptations for Beginning Students

Teacher checks for understanding and gives one-to-one instruction and additional problems. Have beginning students work with a partner.

Adaptations for Advanced Students

Advanced students could be encouraged to complete the entire worksheet. Students can also be directed to the following website of temperature conversion problems:
http://www.mathsisfun.com/temperature-conversion.html

Teacher Reflection/Lesson Evaluation

Some students have been challenged by math. Re-teach and re-teach it, if necessary. Try to make it fun.
This lesson was created by Middletown ABLE.

Converting Fahrenheit and Celsius (A)

$194{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$210{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$104{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$67^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$82^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$76^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
$192{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$131{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$78^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$112{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$36^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$99^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$92{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$201{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$113{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$63{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$48^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$104{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$102{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$146{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$135{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$78{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$32{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$
$45^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$17^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$103{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$44^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$75^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$116{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$
$61{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$	$18^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	$32{ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{C}$

$44^{\circ} \mathrm{C}=\quad{ }^{\circ} \mathrm{F}$
$61{ }^{\circ} \mathrm{F}=\quad{ }^{\circ} \mathrm{C}$
$18^{\circ} \mathrm{C}=\quad{ }^{\circ} \mathrm{F}$

Converting Fahrenheit and Celsius (A) Answers

$$
\begin{aligned}
& 194{ }^{\circ} \mathrm{F}=90^{\circ} \mathrm{C} \quad 210^{\circ} \mathrm{F}=98.88^{\circ} \mathrm{C} \quad 104^{\circ} \mathrm{F}=40^{\circ} \mathrm{C} \\
& 67{ }^{\circ} \mathrm{C}=\underline{152.6^{\circ} \mathrm{F}} \quad 82^{\circ} \mathrm{C}=\underline{179.6^{\circ} \mathrm{F}} \quad 76^{\circ} \mathrm{C}=\underline{168.8{ }^{\circ} \mathrm{F}} \\
& 192^{\circ} \mathrm{F}=\underline{88.88^{\circ} \mathrm{C}} \quad 131^{\circ} \mathrm{F}=\underline{55^{\circ} \mathrm{C}} \quad 78^{\circ} \mathrm{F}=\underline{25.55^{\circ} \mathrm{C}} \\
& 112{ }^{\circ} \mathrm{F}=\underline{44.44^{\circ} \mathrm{C}} \quad 36{ }^{\circ} \mathrm{C}=\underline{96.8{ }^{\circ} \mathrm{F}} \quad 99^{\circ} \mathrm{F}=\underline{37.22^{\circ} \mathrm{C}} \\
& 92^{\circ} \mathrm{F}=\underline{33.33^{\circ} \mathrm{C}} \quad 201^{\circ} \mathrm{F}=\underline{93.88^{\circ} \mathrm{C}} \\
& 113^{\circ} \mathrm{F}=45^{\circ} \mathrm{C} \\
& 63^{\circ} \mathrm{F}=\underline{17.22^{\circ} \mathrm{C}} \quad 48^{\circ} \mathrm{C}=\underline{118.4^{\circ} \mathrm{F}} \quad 104^{\circ} \mathrm{F}=\underline{40^{\circ} \mathrm{C}} \\
& 102^{\circ} \mathrm{F}=38.88^{\circ} \mathrm{C} \\
& 0{ }^{\circ} \mathrm{C}=32^{\circ} \mathrm{F} \\
& 146^{\circ} \mathrm{F}=63.33^{\circ} \mathrm{C} \\
& \begin{array}{llll}
135^{\circ} \mathrm{F} & =\underline{57.22^{\circ} \mathrm{C}} & 78^{\circ} \mathrm{C}=\underline{172.4^{\circ} \mathrm{F}} & 32{ }^{\circ} \mathrm{C}
\end{array}=\underline{89.6{ }^{\circ} \mathrm{F}} \\
& 44^{\circ} \mathrm{C}=\underline{111.2^{\circ} \mathrm{F}} \quad 75^{\circ} \mathrm{C}=\underline{167^{\circ} \mathrm{F}} \quad 116^{\circ} \mathrm{F}=\underline{46.66^{\circ} \mathrm{C}} \\
& 61{ }^{\circ} \mathrm{F}=16.11^{\circ} \mathrm{C} \\
& 18{ }^{\circ} \mathrm{C}=64.4^{\circ} \mathrm{F} \\
& 32^{\circ} \mathrm{F}=\quad 0^{\circ} \mathrm{C}
\end{aligned}
$$

